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ABSTRACT 

Let K be a c o m m u t a t i v e  r ing wi th  a uni t  e lement  1. Let F be a finite 

group ac t ing  on K via  a m a p  t: F ---* A u t ( K ) .  For every subgroup  H _< F 

define t rH:  K --* K H by t r H ( x )  = ~ a e H  or(x). We prove 

THEOREM: t r r  is surjective onto K F it" and only i f  t r p  is surjective onto 

K P for every  (cyclic) pr ime  order  subgroup P o f F .  

This  is false for cer ta in  non-commuta t ive  rings K. 

0. I n t r o d u c t i o n  

Let K be a commutat ive ring with a unit element 1 and let F be a finite group 

acting on K via a morphism t: F -~ Aut(K) .  For every subgroup H of F and 

x E K define the trace map t ru :  K ~ K by 

trH(x) = ~ a(x) .  
aEH 

Clearly, the image of this map lies in / (H,  the H invariant elements in K.  In 

this paper  I discuss the relation between the surjectivity of t r r :  K ~ K r and 

of trH: K ~ K H for various subgroups H <_ F. Note that  trH is a /£H linear 

map, so that  the surjectivity of t r~  onto K H is equivalent to the existence of 

an element XH E K with trH(XH) ----- 1. Using this, it is easily shown that  the 

surjectivity of t r r  onto K r implies the surjectivity of trH onto K H for every 

subgroup H in F. (For, if { t l , . . . ,  tn} are representatives of the left cosets of H 
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in F, then X H  = tl ( x r )  + - . - +  tn (x r ) ) .  In particular, i fp is a prime number 

and P _< F a subgroup of order p, then trp is surjective onto K P. 

The main result is regarding the converse. 

THEOREM 0.1: Let F be a finite group acting on a commutative ring K.  Let H 

be a subgroup o f F  with trH: K ---* K H surjective and let I -- {gl , . . - ,g~} 

be a set of representatives for the right cosets of H in F. Then the following 

conditions are equivalent; 

1. trr:  K ~ K r is surjective. 

2. There exists x E K H such that ~ 9 , e l g i ( x )  : 1. 

3. For each subgroup P ~ F of prime order that intersects H trivially, 

trp: K ---* K P is surjective. 

4. For each subgroup S <_ F, S MH -- (1), trs: K ~ K s is surjectiye. 

COROLLARY 0.2: I f  trp: K ~ K P is surjective for a11 subgroups P of prime 

order, then trr:  K ~ K r is surjective. 

Proof: Take H = (1). Now use implication (3) =~ (1). I 

The proof of Theorem 0.1 uses a tensor induction argument for skew group 

rings. The language used there is of relative projectiveness. Hence, in Proposition 

1.2 we translate the surjectivity of the various trace maps into this language. The 

theorem is proved in §1. 

Implication (4) =~ (1) gives the following: 

COROLLARY 0.3: Let H be a subgroup of F. I f  there exists XH E K with 

trH(XH) : 1 and for every S <_ F such that S M H  = (1) there exists x s  E K 

with t r s (x s )  = 1, then there exists xr  E K with t r r (xr )  = 1. 

In §2 we give an explicit formula for xr  given the elements XH and xs  mentioned 

above. 

Finally, in §3 we apply Theorem 0.1 to generalize the result obtained by Zhong 

([Z], Cor. 5.4) on the global dimension of skew group rings KtF, where K is a 

commutative Noetherian ring. 

Remarks: 

1. If the action is trivial, the surjectivity of trH is equivalent to ord(H) being 

invertible in K and the theorem reduces to a triviality. 

2. If K is a field and the action of F is faithful, then the trace maps are 

surjective (the automorphisms are linearly independent). 
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3. Let k be a number field and let K be a finite Galois extension with Galois 

group F = Gal (K/k) .  Let aK, ak denote the rings of algebraic integers. 

The Galois group F acts on aK and a~ is the fixed ring. The surjectivity 

of the trace map trr  : aK ---* ak is equivalent to the extension K / k  being 

tame (see [El, 3, Th.3). 

4. ([NV]) Let R = @oerR~ be a strongly graded ring by a finite group F and 

suppose that there exists an element xr E Z(Re) (e the identity element of 

F) such that t r r (xr )  = 1. If Re is left hereditary then R is left hereditary. 

5. Let K and F be as in Theorem 0.1. Then/: /°(F,  K) is trivial if and only if 

H [-I°(P'g) 
P<F 

IP] prime 

is trivial. Here/7/* denotes the reduced homology. (See [Br], Chapter VI, 

Section 4.) 

6. Corollary 0.2 is not true in general if one replaces K by a non-commutative 

ring R. Example: (This is essentially the case p = 2 of the example 

appearing in [HLS], p.184.) 

Let R = M2 ( F2 (x)) be the ring of 2 x 2 matrices over the field F2 (x) (= 

rational functions over the field of two elements). Let F = Z2 x Z2 = (a) × (r) 

and define the following action on the ring R: 

r : (  ac b)___~(a'c, b : ) ,  

where 
a' = (x  + 1) -1  

b l=  (x + 1) -1 

c ' =  (x + 1) -1 

d ' =  (x + 1) -1 

[a + b + (c + d)x], 

[(a + cx)x + (b + dx)], 

[a + b + c + d], 

[(a + c)x + (b + d)]. 

One checks that  tr(~), tr(~), t r (~)  are surjective onto 

S = R  (°) = R (~) = R  (~) 

b u t t r r :  R --* R r is the zero map. 

ACKNOWLEDGEMENT: I would like to acknowledge K.A. Brown for the very 

useful remarks and suggestions. 
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1. P r o o f  o f  t h e  t h e o r e m  

With the given action of F on K we construct the skew group ring KtF. It is iso- 

morphic to the group ring KF  as a left free module over K and the multiplication 

is defined by the rule 

(xa)(yT) = xa(y)av, x ,y  E K, a,T E F 

Z gifgi-l(hm) 
gi E I 

where a(y) = to(y) is the action of a on y via the homomorphism t. 

Definition 1.1: Let R be a ring and S a subring. We say that R is relative 

semisimple if every R-module M which is projective as an S-module is also 

projective as an R-module. 

PROPOSITION 1.2: Let L = KtH be a sub-skew group ring of R = KtF where 

H is a subgroup o f f  (in KtH, t is restricted to H). Then an R-module M which 

is L projective is also R projective if and 01112: if there exists f E EndK, H ( MH ) 

with 

Z g~(f) = Z g~fg~'l = idM 
giEl iEl 

where I = {g l , . . . , gn}  are representatives of the right cosets of H in F. (For 

group algebras this is in [CR], Th. 19.2.) 

Proo£" First note that if f E EndgtH(M), then )--~-9,et g j g ~ l  is KtH-linear. 

Indeed, 

= Z gi f (h- lgi ) - l (m)  = h Z(h-lgi)f(h-lgi)-l(Tft) 
giEl giEI 

=h Z (gjhj)f(gjhj)-l(?)~) = h ~ g j fg ; l (m) .  
gjEI gjEI 

Now consider the epimorphism of KtF modules 

(KtF ®KtU K) @K M ~ M, 

(xo ® y) ® m x (y)m, 

where KtF ®KtH K has a left KtF structure via left multiplication on KtF and 

(KtF ®gtH K)®g M has the left KtF diagonal structure (see [A], §1 for details). 

Now the splitting of this map over KtF is equivalent to the existence of a map 

f E EndgtH(M) with )-~-g~1 gifg~ 1 = idM. So, the result will follow if we show 



To show (3) ~ (4) 

S o A H  = (1},trso: K 

N <  So 
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that  M being KtH-projective implies (KtF ®gtH K) ®K M is KtF projective 

(with the given action). Indeed, there is a natural isomorphism of functors 

F =  Homg, r ( (K tF  ®K,H K ) ® g  M , - )  

~-HomK,r (KtF,  HOmK, H ( M , - ) ) - ~  HomK, H (M, - ) .  

Hence, F is exact provided that M is KtH-projective. 

COROLLARY 1.3: The trace map trr: K --* K r is surjective if and only if K 

is projective as a KtF-module. 

Proof: Take M = K and H = (1). Now apply the proposition. | 

The equivalence of conditions (1) and (2) in Theorem 0.1 follows immediately 

from Proposition 1.2 for M = K and Corollary 1.3. 

The implications (1) ~ (4) =~ (3) are clear (see the introduction for (1) 

(4)). 

let So _< F be a minimal counter example, i.e., 

--* K s° not surjective and for every proper subgroup 

trN: K ~ K N is surjective. 

Clearly, So is not of prime order, so it contains a proper subgroup N ¢ (1). 

We know that  trN: K ---* K g is surjective and every subgroup T < So, 

T n N = (1) is also proper, so that trT: K ~ K T is surjective. Hence, the 

implication (4) =~(1) (shown below) for So gives a contradiction to the minimality 

of So. 

To show (4) =~(1), assume (4) and that trH: K ~ K H is surjective. We 

show that trr: K ~ K r is surjective. Consider the short exact sequence of 

Kt H-modules. 

O.--, J---, Kt H--A-~ K ~ O 

where e(~~aeHXaa ) ---- ~"~aEHXa and J = Kere. 

Since trH: K ---* K H is surjective, the map e splits over KtH and there exists 

an element u = ~heH h(xH)h with ~heH h(XH) = 1. Clearly, KtH ~= J ~ K u .  

Now let 

F = K t H @ z ' "  ®z KtH/{span (hi ® . . . ® x h ~  ® . . . ®  hn-  
z 

hi ® . . .  ® g lMx)h5 ® . . .  ® all x e K, i <_ i, j <_ n} 



226 E. ALJADEFF 

where I = {gx = 1, g2 , . . . , gn}  is a right transversal. 

Define an action of K t F  on F as follows (see [A], p.168). 

define ui E Sym(n), g~,, E I,  h,,, E H by the formula 

(1.3.1) a-lg~ = g~,,h~ 1. 

Then 

X~r(Zl 

Isr. J. Math. 

F o r a  E F,g~ E I 

® - . - ®  z,,) = h~,lzv I @ . . . @  9~-I(x)h~,~z~,~ ® . . . ®  hv, z~,. 

= K ( u  ® . . .  ® u) be the K submodule generated by u ® . . .  ® u 

w =  {(h, ® • ®h°) e v: e s ,  i =  1, .,n}. 

This is abuse of notation, but since this set in K t H  ®z "'" ®z K t H  is mapped 

injectively into F,  it should not confuse the reader. The group F acts on W, 

so let W = Wa u W2 U .-.  U Ws be the decomposition of W into the F-orbits. 

For each Wi, i = 1 , . . . ,  s let Vi = spanK(W/). Clearly, Vi is a KtF-module and 

F = V1 ~ . . .  @ Vs over KtF.  Thus, we must show that  each V~ is K t F  projective. 

Takewi  = ha ® . . . ® h n E W i a n d l e t V /  = K t F ( h l  ® . . . ®  h , ) .  We show 

that  the map 
g~r --~ v(= vd, 

E E xo (hl ® ® h.) 

splits over KtF. 

Denote s tabr  ( hi ® . . .  ® hn ) by N. A close examination of the action of F 

o n ( h a  ® . . . ®  h n ) r e v e a l s t h a t h ( h l  ® . . . ®  hn ) = hhl  ® . . . ® . . . for each 

Now let L 

in F.  Since u is H invariant, the K-module L is also a KtF-module. Hence, the 

decomposition of K t H  modules K t H  ~- J @ K u  induces the decomposition of 

K t F  modules F = L @ E where E is the image in F of 

E P ¢ I  ® z ' " @ z  P~", 

(~1...~,) # (0,...,0), 
0 = Ku, = pO p1  J. 

ei = 1 

Since L _~ K (=principal module over KtF),  we see (Corollary 1.3) that the proof 

of (4)=~(1) will be completed if we show that the module F is projective over 

KtF. To this end let 
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h E H (we assume that gl = 1). Thus, h ~ 1 does not fix ( h i  

i . e . , g M H  = (1). 

By assumption there exists XN E K w i t h  EvEN T (X N ) = 1. 
Define ~: V --* KtF 

227 

® . . . ®  hn),  

( h i  @ . . . ®  h n )  ~ E T ( X N ) T  
"tEN 

and extend ~ linearly over KtF. To show that it is well defined let 

Zxo (hl ®...® = 0 .  

crEF 

We rewrite it as ~-':~i~=1 t~ai (hi @... @ hn ), { t l , . . . ,  tm} representatives of the 

right cosets of N in F and ai = ~ r E N  xi,~v E KtN. Since (h i  ® . . .  ® hn ) i s  

N invariant, we have 

m m 

t,a, (hi  ® . . .  ® hn ) = t,y, ( h, ® . . .  e hn ), 
i=1 i=1 

where Yi : ~.a Xi,r. 
tEN 

m 
The n-tuples {t,(hl ®.. .® h,) }~=1 are distinct and so linearly independent over 

K. Therefore yi = 0 for i = 1 , . . . ,  m. The elements of N fix ~ e N  r (XN) r 
so 

ai E T(XN)T = Yi E T(Xlv)T = O, i.e., ~(b) = 0. 
TEN "tEN 

The fact that  ~ e N  V(XN) = 1 shows that e o ~ = idv. This completes the proof 

of the implication (4 )o(1)  and of Theorem 0.1. 

2. H o w  to  find x r ?  

In this section we give an explicit formula for xr ,  given the elements xH and xs 
for the various S's such that S fq H = (1). 

The way this formula was obtained was by following step by step the proof of 

implication 4 ~ 1. Instead of doing it here we write the expression and prove 

directly that  t r r  ( x r )  = 1. 

Let H _< F be any subgroup of F. DenoteA4 = (S  _ F: S MH = 1}. 

For H and for every S E A4 let XH,XS be elements in K with trH(XH) ---- 1 and 

t r s ( x s  ) = 1. Consider the set of n-tuples W = {(hi . . . .  ,hn):  hi E H} where 
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n = ]G: H I. The group F acts on the set W as follows: for ( X l , . . . , x n )  e W, 

a E F put 

O'(X 1 . . . .  ,Xn)  = ( h ~ , l X v x , . . . , h v ~ x v , ~ )  

where v E Sym(n) and hv, E H are defined in (1.3.1). 

Let W = W1 U - . .  kJ W~ be the decomposition of W into its disjoint orbits. 

Let wi = (hi ,1, . . . ,hi ,~) E Wi for i = 1 . . . .  , s be a representative and let 

Ni = s tabr(wi) .  Since Ni n H = (1), there exists XN, E K with trN~(XN~) = 1. 

THEOREM 2.1: The element x r  given by 

" I i  xr = ~ -~N,  gjh~,j(x.) 
i=1 j = l  

satlslqes t r r ( x r )  = 1. Here (gl, . . . ,g,~) is a set of  representatives of the right 

cosets of H in F. 

Proo~ We prove 
n 

E a [ H  gjhi,j(XH)]XN, = 1. 
aEF i----1 j-----1 

Denoting the above expression by z we have 

n s n 

aEF i~-I j-~l i----1 aEF j=l  

i=1 ttETr[F: Ni] TENi j--1 

where Tr[F: Ni] is a set of representatives for the right cosets of Ni in F. 

Since Ni = stabr(hi,1, . . . ,hl ,n),  the group Ni fixes the product 

[I]]'=1 gjhis(XH)] and since )-~eN, ~-(XN,) = 1, we obtain 

= ~ "IIgJh,,J(x.). 
i----1 ~ETr[F: Nil j= l  

Now consider the set of unordered n-tuples 

A ; { ( ~ h ~ , ~ ,  ~g~h~,~, . . . ,  ~ h ~ , ~ )  } . ~ C ~ :  ~,] 
i=l , . . . , s .  
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The entries of each n-tuple represent the n different cosets of H in r. By 

the definition of the action of r on W it follows that all unordered n-tuples 

obtained in this way are different. Hence, 

# A  = [F: Ni] = Z #Wi  = # W  = (ord(H))  n 
i = 1  i=1  

= #  of unordered n-tuples where each entry represents a different coset of 

H inF .  

After reordering the components in z we see that 

z = Z glhsl(xH)g2hs2(XH)..  "gnhs~(XH) = 1. 

Remark: The formula for x r  holds under weaker conditions, e.g., K non- 

commutative but XH from the center Z of K. 

3. G l o b a l  d i m e n s i o n  o f  skew g r o u p  r ings  

In [Z] Zhong Yi has obtained results on the global dimension of crossed products 

R*F where R is a Noetherian ring and F a finite group. In particular, for skew 

group rings over commutative (Noetherian) rings, he has the following theorems. 

THEOREM 3.1. ([Z] 5.2): Let K be a commutative, Noetherian ring. Let F be 

a finite group acting on K and let KtF be the corresponding skew group ring. 

Then the following are equivalent: 

1. gl. d im.KtF  < c~. 

2. (a) g l . d im.K < oc, 

(b) for every maximal ideal M of K with char(K/M)  = p > O, 

( R / M ) t F M  is semisimple Artinian where FM = {g E F: M 9 = M}. 

3. (a) gl. d im .K < oo, 

(b) for every maxima] ideal g of K with char(K/M)  = p > 0, F(M)  

contains no elements of order p where 

r ( M )  = {g e r :  r 9 - r ~ M ,  for all r E g } .  

THEOREM 3.2. ([Z] 5.4): Let KtF be a skew group ring as in Theorem 3.1 where 

gl.dim. K < oo. Then 
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1. gl. d imKtF  < oo if and only if for aH primes p which are not units in K, 

gl. dim.KtFp < oo, where rp is any Sylow p-subgroup of F. 

2. gl. dim .KtF < oo if and only if for all primes p which are not units in K, 

gl. dim . K t P <  oo, where P is any elementary abelian p-subgroup ofF.  

We shall apply Theorem 0.1 in order to generalize Theorem 3.2 to 

THEOREM 3.3: Let KtF be a skew group ring where K is any commutative ring 

with finite global dimension. Then gl. dim .KtF < oo if and only if for all primes 

p, gl. d i m . K t P  < oo, where P is any (cyclic) subgroup of order p. 

Proof: This follows from the applications of Corollaries 0.2, 1.3 and the propo- 

sition below for the skew group rings KtF and KtP, [P[ = prime. 

PROPOSITION 3.4: Let K be a commutative ring acted on by a finite group F. 

Then gl. dim .KtF < oo if and only if 

(a) gl. d im.K < c~, 

(b) K is projective as a principal KtF module. 

Note that Remark 6 above shows that Theorem 3.3 does not extend to 

non-commutative coefficient rings. 

Proof'. (See [A1], p. 53, implications (1)~  (3) =~ (2).) 

First note that every K module N is a direct summand of the K module 

KtF ®K N (the action via the left component). Hence, 

proj. dimK N < proj. dimK (Ktr ®~c N). 

Now L = KtF ~K N has a KtF left structure and any projective resolution of L 

over Kt[ '  is also a projective resolution of L over K. Thus, 

proj. dimK (K,F OK N) _< proj. dimK, r (KtF ®K N) 

showing the necessity of (a). 

To show the necessity of condition (b) assume proj. dimK, r K = r > 0. 

Using the right exactness of the functor Ext~c,r(K, - )  and Theorems 9.1, 9.2 in 

[S] we get an epimorphism 

Ext~c(K, N) ~ E x t , ,  r (K, Homg (KtF, N)) ~ Ext~c,r(K, N) --, 0 

where N is an arbitrary left KtF module. Thus, K is KtF projective. 
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and 

To show the sufficiency of conditions (a) and (b) let M be a KtF module 

. . . ~ P , ~ P n _ I - ~ . . . ~ P I ~ P o ~ M ~ O  

a projective resolution over KtF. Since projectives over KtF are projective over 

K we get proj. dimg~r M < proj. d img M if we show that  every KtF module 

C, that  is projective over K,  is also projective over KtF. This follows from the 

natural  isomorphism of functors ([B], Lemma 9.3) 

HomK, F(C,-)-- HOmK, r (K, HomK(C,-)) 

and the fact that  K is KtF-projective. 

This completes the proof of Proposition 3.4 and of Theorem 3.3. 

Finally we combine Theorem 3.1 with Theorem 3.3 to obtain the following: 

PROPOSITION 3.5: Let K be a commutative, Noetherian ring of finite global 

dimension. Let F be a finite group acting on K. For each P _< F, [ P [  = prime, 

let M/l v C K be the P-ideal 

M y  = - x: o e P, z e K>. 

Denote by S = {P <_ F,.M v ~ K}.  Then g l . d i m K t F  < c~ if and only if 

for every P E S, I P I = p e ( K / M v  )*. 

Proof: By Theorem 3.3 it is enough to show gl. dim KtP < oo if and only if 

either M v = K or [ P [ = p E ( K / M  v )* where P is any subgroup of F of prime 

order. Assume gl. d i m K t P  < oo and M v # K.  Note that  P acts on K / M v  

trivially, therefore ( K / M  v )t P ~- ( K / M p  ) P. If  p is not invertible in K/A/Ip, 

then p -- 0 in K / I  for some maximal  ideal I containing M v. Clearly, ( K / I ) P  

is not semisimple Artinian which is a contradiction to Theorem 3.1 (1)~(2) .  To 

show sufficiency, let I be a maximal  ideal in K and let PI = {~r E P: I ~ = I}. 

If I ~ A4 v then either P acts nontrivially on K / I  or PI = < 1 >. In both cases 

(K/ I ) tP l  is semisimple Artinian. If  I D ~ / p  then P ES. Hence, p is invertibte 

in K/ .M v and therefore in K/ I .  Clearly, (K/I ) tPI  (= ( K / I ) P )  is semisimple 

Artinian. Now use Theorem 3.1 (2)=~(1). 
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